Source code for torch.optim.asgd
import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _default_to_fused_or_foreach,
_differentiable_doc, _foreach_doc, _maximize_doc)
from torch._utils import is_compiling
from typing import List, Optional
__all__ = ["ASGD", "asgd"]
def _to_tensor(x):
if not isinstance(x, torch.Tensor):
return torch.tensor(x)
return x
[docs]class ASGD(Optimizer):
def __init__(
self,
params,
lr=1e-2,
lambd=1e-4,
alpha=0.75,
t0=1e6,
weight_decay=0,
foreach: Optional[bool] = None,
maximize: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(
lr=lr,
lambd=lambd,
alpha=alpha,
t0=t0,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize,
differentiable=differentiable,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("maximize", False)
group.setdefault("differentiable", False)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["step"]
)
if not step_is_tensor:
for s in state_values:
s["step"] = torch.tensor(float(s["step"]))
eta_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["eta"]
)
if not eta_is_tensor:
for s in state_values:
s["eta"] = torch.tensor(s["eta"])
mu_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["mu"]
)
if not mu_is_tensor:
for s in state_values:
s["mu"] = torch.tensor(float(s["mu"]))
def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps):
for p in group["params"]:
if p.grad is not None:
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("ASGD does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = torch.tensor(0.0)
state["eta"] = torch.tensor(group["lr"])
state["mu"] = torch.tensor(1.0)
state["ax"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
mus.append(state["mu"])
axs.append(state["ax"])
etas.append(state["eta"])
state_steps.append(state["step"])
[docs] @_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
mus = []
axs = []
etas = []
state_steps = []
self._init_group(group, params_with_grad, grads, mus, axs, etas, state_steps)
asgd(
params_with_grad,
grads,
axs,
mus,
etas,
state_steps,
lambd=group["lambd"],
lr=group["lr"],
t0=group["t0"],
alpha=group["alpha"],
weight_decay=group["weight_decay"],
foreach=group["foreach"],
maximize=group["maximize"],
differentiable=group["differentiable"],
)
return loss
ASGD.__doc__ = r"""Implements Averaged Stochastic Gradient Descent.
It has been proposed in `Acceleration of stochastic approximation by
averaging`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-2)
lambd (float, optional): decay term (default: 1e-4)
alpha (float, optional): power for eta update (default: 0.75)
t0 (float, optional): point at which to start averaging (default: 1e6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
{foreach}
{maximize}
{differentiable}
.. _Acceleration of stochastic approximation by averaging:
https://dl.acm.org/citation.cfm?id=131098
""".format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
def asgd(
params: List[Tensor],
grads: List[Tensor],
axs: List[Tensor],
mus: List[Tensor],
etas: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: Optional[bool] = None,
maximize: bool = False,
differentiable: bool = False,
*,
lambd: float,
lr: float,
t0: float,
alpha: float,
weight_decay: float,
):
r"""Functional API that performs asgd algorithm computation.
See :class:`~torch.optim.ASGD` for details.
"""
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_asgd
else:
func = _single_tensor_asgd
func(
params,
grads,
axs,
mus,
etas,
state_steps,
lambd=lambd,
lr=lr,
t0=t0,
alpha=alpha,
weight_decay=weight_decay,
maximize=maximize,
differentiable=differentiable,
)
def _single_tensor_asgd(
params: List[Tensor],
grads: List[Tensor],
axs: List[Tensor],
mus: List[Tensor],
etas: List[Tensor],
state_steps: List[Tensor],
*,
lambd: float,
lr: float,
t0: float,
alpha: float,
weight_decay: float,
maximize: bool,
differentiable: bool,
):
def _to_tensor(x):
if not isinstance(x, torch.Tensor):
return torch.tensor(x)
return x
for i, param in enumerate(params):
grad = grads[i]
grad = grad if not maximize else -grad
mu = mus[i]
ax = axs[i]
eta = etas[i]
step_t = state_steps[i]
if torch.is_complex(param):
grad = torch.view_as_real(grad)
param = torch.view_as_real(param)
ax = torch.view_as_real(ax)
# update step
step_t += 1
step = _get_value(step_t)
if weight_decay != 0:
grad = grad.add(param, alpha=weight_decay)
eta_value = _get_value(eta)
# decay term
param.mul_(1 - lambd * eta_value)
# update parameter
param.add_(grad, alpha=-eta_value)
# averaging
if is_compiling() or mu.item() != 1:
ax.add_(param.sub(ax).mul(mu))
else:
ax.copy_(param)
new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha))
eta.copy_(new_eta)
new_mu = _to_tensor(1 / max(1, step - t0))
mu.copy_(new_mu)
def _multi_tensor_asgd(
params: List[Tensor],
grads: List[Tensor],
axs: List[Tensor],
mus: List[Tensor],
etas: List[Tensor],
state_steps: List[Tensor],
*,
lambd: float,
lr: float,
t0: float,
alpha: float,
weight_decay: float,
maximize: bool,
differentiable: bool,
):
if len(params) == 0:
return
assert not differentiable, "_foreach ops don't support autograd"
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, axs, mus, etas, state_steps])
for ((grouped_params, grouped_grads, grouped_axs, grouped_mus,
grouped_etas, grouped_state_steps), _) in grouped_tensors.values():
if maximize:
grouped_grads = torch._foreach_neg(grouped_grads)
def _view_complex_as_real(tensor_list):
return [
torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list
]
grouped_grads = _view_complex_as_real(grouped_grads)
grouped_params = _view_complex_as_real(grouped_params)
grouped_axs = _view_complex_as_real(grouped_axs)
# update step
torch._foreach_add_(grouped_state_steps, 1)
if weight_decay != 0:
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
# decay term
eta = _get_value(grouped_etas[0])
torch._foreach_mul_(grouped_params, 1 - lambd * eta)
# update parameter
torch._foreach_add_(grouped_params, grouped_grads, alpha=-eta)
# averaging
for i in range(len(grouped_axs)):
if is_compiling() or grouped_mus[i].item() != 1:
grouped_axs[i].add_(grouped_params[i].sub(grouped_axs[i]).mul(grouped_mus[i]))
else:
grouped_axs[i].copy_(grouped_params[i])
# update eta and mu
for i in range(len(grouped_mus)):
new_eta = _to_tensor(
lr / (1 + lambd * lr * _get_value(grouped_state_steps[i]) ** alpha)
)
grouped_etas[i].copy_(new_eta)
new_mu = _to_tensor(1 / max(1, _get_value(grouped_state_steps[i]) - t0))
grouped_mus[i].copy_(new_mu)