python.builtin¶
dynamic_shape_round¶
Original source code:
import torch
from torch._export import dynamic_dim
x - torch.ones(3, 2)
dynamic_constraint - dynamic_dim(x, 0)
def dynamic_shape_round(x):
"""
Calling round on dynamic shapes is not supported.
"""
return x[: round(x.shape[0] / 2)]
Result:
Unsupported: Calling round() on symbolic value is not supported. You can use floor() to implement this functionality
tensor_setattr¶
Original source code:
import torch
def tensor_setattr(x, attr):
"""
setattr() call onto tensors is not supported.
"""
setattr(x, attr, torch.randn(3, 2))
return x + 4
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1):
#
sym_size_int - torch.ops.aten.sym_size.int(arg0_1, 0)
sym_size_int_1 - torch.ops.aten.sym_size.int(arg0_1, 1)
eq - sym_size_int_1 -- 2; sym_size_int_1 - None
scalar_tensor_default: f32[] - torch.ops.aten.scalar_tensor.default(eq); eq - None
_assert_async_msg - torch.ops.aten._assert_async.msg(scalar_tensor_default, 'Input arg0_1.shape[1] is specialized at 2'); scalar_tensor_default - None
eq_1 - sym_size_int -- 3; sym_size_int - None
scalar_tensor_default_1: f32[] - torch.ops.aten.scalar_tensor.default(eq_1); eq_1 - None
_assert_async_msg_1 - torch.ops.aten._assert_async.msg(scalar_tensor_default_1, 'Input arg0_1.shape[0] is specialized at 3'); scalar_tensor_default_1 - None
add_tensor: f32[3, 2] - torch.ops.aten.add.Tensor(arg0_1, 4); arg0_1 - None
return (add_tensor,)
Graph Signature: ExportGraphSignature(parameters-[], buffers-[], user_inputs-['arg0_1', 'arg1_1'], user_outputs-['add_tensor'], inputs_to_parameters-{}, inputs_to_buffers-{}, buffers_to_mutate-{}, backward_signature-None, assertion_dep_token-None)
Symbol to range: {}
type_reflection_method¶
Original source code:
import torch
class A:
@classmethod
def func(cls, x):
return 1 + x
def type_reflection_method(x):
"""
type() calls on custom objects followed by method calls are not allowed
due to its overly dynamic nature.
"""
a - A()
return type(a).func(x)
Result:
Unsupported: Can't call type() on generated custom object. Please use __class__ instead
You can rewrite the example above to something like the following:
def type_reflection_method_rewrite(x):
"""
Custom object class methods will be inlined.
"""
return A.func(x)