python.data-structure¶
dictionary¶
Original source code:
import torch
def dictionary(x, y):
"""
Dictionary structures are inlined and flattened along tracing.
"""
elements - {}
elements["x2"] - x * x
y - y * elements["x2"]
return {"y": y}
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: i64[]):
#
sym_size_int - torch.ops.aten.sym_size.int(arg0_1, 0)
sym_size_int_1 - torch.ops.aten.sym_size.int(arg0_1, 1)
eq - sym_size_int_1 -- 2; sym_size_int_1 - None
scalar_tensor_default: f32[] - torch.ops.aten.scalar_tensor.default(eq); eq - None
_assert_async_msg - torch.ops.aten._assert_async.msg(scalar_tensor_default, 'Input arg0_1.shape[1] is specialized at 2'); scalar_tensor_default - None
eq_1 - sym_size_int -- 3; sym_size_int - None
scalar_tensor_default_1: f32[] - torch.ops.aten.scalar_tensor.default(eq_1); eq_1 - None
_assert_async_msg_1 - torch.ops.aten._assert_async.msg(scalar_tensor_default_1, 'Input arg0_1.shape[0] is specialized at 3'); scalar_tensor_default_1 - None
mul_tensor: f32[3, 2] - torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 - None
mul_tensor_1: f32[3, 2] - torch.ops.aten.mul.Tensor(arg1_1, mul_tensor); arg1_1 - mul_tensor - None
return (mul_tensor_1,)
Graph Signature: ExportGraphSignature(parameters-[], buffers-[], user_inputs-['arg0_1', 'arg1_1'], user_outputs-['mul_tensor_1'], inputs_to_parameters-{}, inputs_to_buffers-{}, buffers_to_mutate-{}, backward_signature-None, assertion_dep_token-None)
Symbol to range: {}
fn_with_kwargs¶
Original source code:
import torch
def fn_with_kwargs(pos0, tuple0, *myargs, mykw0-None, **mykwargs):
"""
Keyword arguments are not supported at the moment.
"""
out - pos0
for arg in tuple0:
out *- arg
for arg in myargs:
out *- arg
out *- mykw0
out *- mykwargs["input0"] * mykwargs["input1"]
return out
Result:
Unsupported: Kwargs to torch.export is not supported
list_contains¶
Original source code:
import torch
def list_contains(x):
"""
List containment relation can be checked on a dynamic shape or constants.
"""
assert x.size(-1) in [6, 2]
assert x.size(0) not in [4, 5, 6]
assert "monkey" not in ["cow", "pig"]
return x + x
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2]):
#
sym_size_int - torch.ops.aten.sym_size.int(arg0_1, 0)
sym_size_int_1 - torch.ops.aten.sym_size.int(arg0_1, 1)
eq - sym_size_int_1 -- 2; sym_size_int_1 - None
scalar_tensor_default: f32[] - torch.ops.aten.scalar_tensor.default(eq); eq - None
_assert_async_msg - torch.ops.aten._assert_async.msg(scalar_tensor_default, 'Input arg0_1.shape[1] is specialized at 2'); scalar_tensor_default - None
eq_1 - sym_size_int -- 3; sym_size_int - None
scalar_tensor_default_1: f32[] - torch.ops.aten.scalar_tensor.default(eq_1); eq_1 - None
_assert_async_msg_1 - torch.ops.aten._assert_async.msg(scalar_tensor_default_1, 'Input arg0_1.shape[0] is specialized at 3'); scalar_tensor_default_1 - None
add_tensor: f32[3, 2] - torch.ops.aten.add.Tensor(arg0_1, arg0_1); arg0_1 - None
return (add_tensor,)
Graph Signature: ExportGraphSignature(parameters-[], buffers-[], user_inputs-['arg0_1'], user_outputs-['add_tensor'], inputs_to_parameters-{}, inputs_to_buffers-{}, buffers_to_mutate-{}, backward_signature-None, assertion_dep_token-None)
Symbol to range: {}
list_unpack¶
Original source code:
from typing import List
import torch
def list_unpack(args: List[torch.Tensor]):
"""
Lists are treated as static construct, therefore unpacking should be
erased after tracing.
"""
x, *y - args
return x + y[0]
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: i64[], arg2_1: i64[]):
#
sym_size_int - torch.ops.aten.sym_size.int(arg0_1, 0)
sym_size_int_1 - torch.ops.aten.sym_size.int(arg0_1, 1)
eq - sym_size_int_1 -- 2; sym_size_int_1 - None
scalar_tensor_default: f32[] - torch.ops.aten.scalar_tensor.default(eq); eq - None
_assert_async_msg - torch.ops.aten._assert_async.msg(scalar_tensor_default, 'Input arg0_1.shape[1] is specialized at 2'); scalar_tensor_default - None
eq_1 - sym_size_int -- 3; sym_size_int - None
scalar_tensor_default_1: f32[] - torch.ops.aten.scalar_tensor.default(eq_1); eq_1 - None
_assert_async_msg_1 - torch.ops.aten._assert_async.msg(scalar_tensor_default_1, 'Input arg0_1.shape[0] is specialized at 3'); scalar_tensor_default_1 - None
add_tensor: f32[3, 2] - torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 - arg1_1 - None
return (add_tensor,)
Graph Signature: ExportGraphSignature(parameters-[], buffers-[], user_inputs-['arg0_1', 'arg1_1', 'arg2_1'], user_outputs-['add_tensor'], inputs_to_parameters-{}, inputs_to_buffers-{}, buffers_to_mutate-{}, backward_signature-None, assertion_dep_token-None)
Symbol to range: {}