Shortcuts

AdamW

class torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False, *, maximize=False, foreach=None, capturable=False, differentiable=False, fused=None)[source]

Implements AdamW algorithm.

input:γ(lr),β1,β2(betas),θ0(params),f(θ)(objective),ϵ (epsilon)λ(weight decay),amsgrad,maximizeinitialize:m00 (first moment),v00 ( second moment),v0^max0fort=1todoifmaximize:gtθft(θt1)elsegtθft(θt1)θtθt1γλθt1mtβ1mt1+(1β1)gtvtβ2vt1+(1β2)gt2mt^mt/(1β1t)vt^vt/(1β2t)ifamsgradvt^maxmax(vt^max,vt^)θtθtγmt^/(vt^max+ϵ)elseθtθtγmt^/(vt^+ϵ)returnθt\begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \: \epsilon \text{ (epsilon)} \\ &\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, \: \textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned}

For further details regarding the algorithm we refer to Decoupled Weight Decay Regularization.

Parameters
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate (default: 1e-3)

  • betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))

  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

  • weight_decay (float, optional) – weight decay coefficient (default: 1e-2)

  • amsgrad (bool, optional) – whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False)

  • maximize (bool, optional) – maximize the params based on the objective, instead of minimizing (default: False)

  • foreach (bool, optional) – whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None)

  • capturable (bool, optional) – whether this instance is safe to capture in a CUDA graph. Passing True can impair ungraphed performance, so if you don’t intend to graph capture this instance, leave it False (default: False)

  • differentiable (bool, optional) – whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don’t intend to run autograd through this instance (default: False)

  • fused (bool, optional) – whether the fused implementation (CUDA only) is used. Currently, torch.float64, torch.float32, torch.float16, and torch.bfloat16 are supported. (default: None)

Note

The foreach and fused implementations are typically faster than the for-loop, single-tensor implementation. Thus, if the user has not specified BOTH flags (i.e., when foreach = fused = None), we will attempt defaulting to the foreach implementation when the tensors are all on CUDA. For example, if the user specifies True for fused but nothing for foreach, we will run the fused implementation. If the user specifies False for foreach but nothing for fused (or False for fused but nothing for foreach), we will run the for-loop implementation. If the user specifies True for both foreach and fused, we will prioritize fused over foreach, as it is typically faster. We attempt to use the fastest, so the hierarchy goes fused -> foreach -> for-loop. HOWEVER, since the fused implementation is relatively new, we want to give it sufficient bake-in time, so we default to foreach and NOT fused when the user has not specified either flag.

add_param_group(param_group)

Add a param group to the Optimizer s param_groups.

This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the Optimizer as training progresses.

Parameters

param_group (dict) – Specifies what Tensors should be optimized along with group specific optimization options.

load_state_dict(state_dict)

Loads the optimizer state.

Parameters

state_dict (dict) – optimizer state. Should be an object returned from a call to state_dict().

register_step_post_hook(hook)

Register an optimizer step post hook which will be called after optimizer step. It should have the following signature:

hook(optimizer, args, kwargs) -> None

The optimizer argument is the optimizer instance being used.

Parameters

hook (Callable) – The user defined hook to be registered.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemoveableHandle

register_step_pre_hook(hook)

Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature:

hook(optimizer, args, kwargs) -> None or modified args and kwargs

The optimizer argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs.

Parameters

hook (Callable) – The user defined hook to be registered.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemoveableHandle

state_dict()

Returns the state of the optimizer as a dict.

It contains two entries:

  • state - a dict holding current optimization state. Its content

    differs between optimizer classes.

  • param_groups - a list containing all parameter groups where each

    parameter group is a dict

step(closure=None)[source]

Performs a single optimization step.

Parameters

closure (Callable, optional) – A closure that reevaluates the model and returns the loss.

zero_grad(set_to_none=True)

Resets the gradients of all optimized torch.Tensor s.

Parameters

set_to_none (bool) – instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests zero_grad(set_to_none=True) followed by a backward pass, .grads are guaranteed to be None for params that did not receive a gradient. 3. torch.optim optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources